Machine Learning Identification on Twitter Towards Combating Covid-19 (SARS-CoV-2): Pandemic Attacks and Urban Resilience in Indonesia

Authors

  • Sapen Sartika Unyi Putri Center for Decentralization & Participatory Development Research, Faculty of Social and Political Sciences, Padjadjaran University, Bandung, Indonesia
  • Inam Ullah Khan Department of Engineering, King’s College London, London WC2R 2LS, United Kingdom

DOI:

https://doi.org/10.62503/gr.v1i1.5

Keywords:

Machine Learning, Covid-19 (SARS-CoV-2), Urban Resilience, Twitter, Indonesia

Abstract

The purpose of this study is to detect the topic and discourse of the development of covid-19 and its resistance on social media Twitter in Indonesia. This research method is surveyed through Machine Learning to filter, track, and predict the spread of Covid-19 (SARS-CoV-2) on Twitter, and is assisted by Nvivo 12 pro and Ncapture analysis tools to collect data from big data on Twitter. The results of this study show ML (Machine Learning) plays a role in fighting the virus, especially looking at it from the perspective of screening, forecasting, and vaccines spread across various social media accounts on Twitter. A comprehensive survey of ML algorithms and models used in covid-19 (SARS-CoV-2) development expeditions on Twitter can help fight the virus. This research shows that the hashtag #lawancovid19 (Fight Covid-19) has relevance to several new hashtags that are still relevant in campaigning against covid-19 on Twitter to combat community and urban vulnerabilities in Indonesia. Collectively, characteristics such as Tagar #ayovaksin (let's get vaccinated), #jagajarak (keep your distance), and #ayopakaimasker (let's wear masks) support the resistance to covid-19 in Indonesia the account (@Username) that is most often @mention in the covid-19 cloud l action is the account of the @jokowi (President of Indonesia). The social media movement (Twitter) in encouraging community resilience and urban resilience through digital communication against Covid-19 (SARS-CoV-2) has predominantly succeeded in shaping understanding, behavior, and prudence in interacting directly in public spaces. This is important in the context of assessing messages and communications within the overall social media (Twitter) communication activities in response to online resistance measures in support of public health as well as to digitally address the global pandemic. This research contributes to providing insight into the dynamics of covid-19 (SARS-CoV-2) combat communication on slot resmi Social-Media (Twitter) and supporting public health measures.

References

Afrin, S., Chowdhury, F. J., & Rahman, M. M. (2021). COVID-19 pandemic: rethinking strategies for resilient urban design, perceptions, and planning. Frontiers in Sustainable Cities, 3, 668263. https://doi.org/10.3389/frsc.2021.668263

Bennett, W. L., & Segerberg, A. (2015). The logic of connective action: Digital media and the personalization of contentious politics. In Handbook of digital politics (pp. 169-198). Edward Elgar Publishing. https://doi.org/10.4337/9781782548768.00020

Budhwani, H., & Sun, R. (2020). Creating COVID-19 stigma by referencing the novel coronavirus as the “Chinese virus” on Twitter: quantitative analysis of social media data. Journal of Medical Internet Research, 22(5), e19301. https://preprints.jmir.org/preprint/19301

Chakraborty, I., & Maity, P. (2020). COVID-19 outbreak: Migration, effects on society, global environment and prevention. Science of the total environment, 728, 138882. https://doi.org/10.1016/j.scitotenv.2020.138882

Cheshmehzangi, A. (2020). Reflection on early lessons for urban resilience and public health enhancement during the COVID-19. Health, 12(10), 1390. http://www.scirp.org/journal/Paperabs.aspx?PaperID=103753

De La Vega, R., Ruíz-Barquín, R., Boros, S., & Szabo, A. (2020). Could attitudes toward COVID-19 in Spain render men more vulnerable than women?. Global public health, 15(9), 1278-1291. https://doi.org/10.1080/17441692.2020.1791212

Dwinantoaji, H., & Sumarni, D. W. (2020). Human security, social stigma, and global health: the COVID-19 pandemic in Indonesia. Journal of the Medical Sciences (Berkala Ilmu Kedokteran), 52(3). https://doi.org/10.19106/JMedSciSI005203202014

Harini, S., Paskarina, C., Rachman, J. B., & Widianingsih, I. (2022). Jogo Tonggo and Pager Mangkok: Synergy of Government and Public Participation in the Face of COVID-19. Journal of International Women's Studies, 24(8), 5.https://vc.bridgew.edu/jiws/vol24/iss8/5/

Harjana, N. P. A., Januraga, P. P., Indrayathi, P. A., Gesesew, H. A., & Ward, P. R. (2021). Prevalence of depression, anxiety, and stress among repatriated Indonesian migrant workers during the COVID-19 pandemic. Frontiers in Public Health, 9, 630295. https://doi.org/10.3389/fpubh.2021.630295

Huang, Q., Jackson, S., Derakhshan, S., Lee, L., Pham, E., Jackson, A., & Cutter, S. L. (2021). Urban-rural differences in COVID-19 exposures and outcomes in the South: A preliminary analysis of South Carolina. PloS one, 16(2), e0246548. https://doi.org/10.1371/journal.pone.0246548

Kaligis, F., Indraswari, M. T., & Ismail, R. I. (2020). Stress during COVID-19 pandemic: mental health condition in Indonesia. Medical Journal of Indonesia, 29(4), 436-41. https://doi.org/10.13181/mji.bc.204640

Kominfo. (2020). Aneka Aplikasi Bantuan Penanganan Covid-19 (SARS-CoV-2). [online] available at https://www.kominfo.go.id/content/detail/31754/aneka-aplikasi-bantu-penanganan-Covid-19 (SARS-CoV-2)/0/sorotan_media accessed on January 2023

Kuqi, B., Elezaj, E., Millaku, B., Dreshaj, A., & Hung, N. T. (2023). The impact of COVID-19 (SARS-CoV-2) in tourism industry: evidence of Kosovo during Q1, Q2 and Q3 period of 2020. Journal of Sustainable Finance & Investment, 13(1), 92-103. https://doi.org/10.1080/20430795.2021.1883986

Lak, A., Asl, S. S., & Maher, A. (2020). Resilient urban form to pandemics: Lessons from COVID-19. Medical Journal of the Islamic Republic of Iran, 34, 71. https://doi.org/10.34171%2Fmjiri.34.71

Li, J., Xu, Q., Cuomo, R., Purushothaman, V., & Mackey, T. (2020). Data mining and content analysis of the Chinese social media platform Weibo during the early COVID-19 (SARS-COV-2) outbreak: retrospective observational infoveillance study. JMIR Public Health and Surveillance, 6(2), e18700.https://preprints.jmir.org/preprint/18700

Lugito, N. P. H., Kurniawan, A., Lorens, J. O., & Sieto, N. L. (2021). Mental health problems in Indonesian internship doctors during the COVID-19 pandemic. Journal of Affective Disorders Reports, 6, 100283. https://doi.org/10.1016/j.jadr.2021.100283

Mackey, T., Purushothaman, V., Li, J., Shah, N., Nali, M., Bardier, C., ... & Cuomo, R. (2020). Machine learning to detect self-reporting of symptoms, testing access, and recovery associated with COVID-19 (SARS-COV-2) on Twitter: retrospective big data infoveillance study. JMIR public health and surveillance, 6(2), e19509. https://preprints.jmir.org/preprint/19509

Malik, I., Prianto, A. L., Abdillah, A., Rusnaedy, Z., & Amalia, A. A. (2021). Urban resilience strategy in the climate change governance in Makassar City, Indonesia. Journal of Government and Civil Society, 5(1), 31-50. http://dx.doi.org/10.31000/jgcs.v5i1.3884

Marpaung, Y. N. (2020). Bersama Melawan Stigma Sosial Covid-19 (SARS-CoV-2). [online] available at https://kepriprov.go.id/berita/pemprov-kepri/bersama-melawan-stigma-sosial-Covid-19 (SARS-CoV-2) accessed on January 2023

Meagher, K., Achi, N. E., Bowsher, G., Ekzayez, A., & Patel, P. (2021). Exploring the role of City Networks in supporting urban resilience to COVID-19 in conflict-affected settings. Open Health, 2(1), 1-20. https://doi.org/10.1515/openhe-2021-0001

Oktaviani, N. T., Nurmandi, A., % Salahuddin, S. (2022). Study of Official Government Website and Twitter Content Quality in Four Local Governments of Indonesia. In Proceedings of Sixth International Congress on Information and Communication Technology: ICICT 2021, London, Volume 2 (pp. 783-795). Springer Singapore. 10.1007/978-981-16-2380-6_69

Ozkendir, O. M., Askar, M., & Kocer, N. E. (2020). Influence of the epidemic COVID-19: an outlook on health, business and scientific studies. Lab-in-Silico, 1(1), 26-30. : https://doi.org/110.22034/lins20011026

Parahita, G. D. (2019). The rise of Indonesian feminist activism on social media. Jurnal Komunikasi Ikatan Sarjana Komunikasi Indonesia, 4(2), 104-115. https://doi.org/10.25008/jkiski.v4i2.331

Pratiwi, S. F., Supriatna, S., & Manessa, M. D. M. (2021). Kerentanan Wilayah Terhadap Covid-19 di Kota Pariaman. Geodika: Jurnal Kajian Ilmu dan Pendidikan Geografi, 5(2), 269-278. https://doi.org/10.29408/geodika.v5i2

Prianto, A. L., Abdillah, A., Syukri, S., Muhammad, F., & Yama, A. (2021). Combating Infodemic Covid-19: Government Response Against Fake News on Social Media. Profetik: Jurnal Komunikasi, 14(2), 255-275. https://doi.org/10.14421/pjk.v14i2.2386

Prianto, A. L., Malik, I., Khaerah, N., Abdillah, A., & Jermsittiparsert, K. (2022). Government, Digital Society and Industry 4.0: Connective Action Against Covid-19 Fake News. In Digital Technologies and Applications: Proceedings of ICDTA’22, Fez, Morocco, Volume 1 (pp. 480-491). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-01942-5_48

Purwanto, P., Utaya, S., Handoyo, B., Bachri, S., Astuti, I. S., Utomo, K. S. B., & Aldianto, Y. E. (2021). Spatiotemporal analysis of COVID-19 spread with emerging hotspot analysis and space–time cube models in East Java, Indonesia. ISPRS International Journal of Geo-Information, 10(3), 133. https://www.mdpi.com/2220-9964/10/3/133#

Putera, P. B., Widianingsih, I., Ningrum, S., Suryanto, S., & Rianto, Y. (2022). Overcoming the COVID-19 Pandemic in Indonesia: A Science, technology, and innovation (STI) policy perspective. Health Policy and Technology, 11(3), 100650. https://doi.org/10.1016/j.hlpt.2022.100650

Ramadanty, S., & Safitri, Y. (2019, August). Social media influencers involvement in the digital campaign in Indonesia. In 2019 International Conference on Information Management and Technology (ICIMTech) (Vol. 1, pp. 48-52). IEEE. https://doi.org/10.1109/ICIMTech.2019.8843732

Ruhyana, N. F. (2021). Analisis Kerentanan Usaha Mikro Kecil Akibat Pandemi Covid-19 di Kabupaten Sumedang. Inovasi, 18(2), 199-210. https://doi.org/10.33626/inovasi.v18i2.405

Salahuddin, S., Nurmandi, A., Sulistyaningsih, T., Lutfi, M., & Sihidi, I. T. (2020). Analysis of government official Twitters during Covid-19 crisis in Indonesia. Talent Development & Excellence, 12(1), 3899-3915.

Setiawati, Y., Wahyuhadi, J., Joestandari, F., Maramis, M. M., & Atika, A. (2021). Anxiety and resilience of healthcare workers during COVID-19 pandemic in Indonesia. Journal of Multidisciplinary Healthcare, 1-8. https://doi.org/10.2147/JMDH.S276655

Sulistiadi, W., Rahayu, S., & Harmani, N. (2020). Handling of Public Stigma on COVID-19 in Indonesian Society. Kesmas-National Public Health Journal, 69-75. http://dx.doi.org/10.21109/kesmas.v15i2.3909

Tawai, A., Suharyanto, A., Putranto, T. D., de Guzman, B. M., & Prastowo, A. A. (2021). Indonesian covid-19 issue on media: review on spiral of silence application theory. Jurnal Studi Komunikasi, 5(2), 286-301. https://doi.org/10.25139/jsk.v5i2.3758

Unicef Indonesia. (2020). Covid-19 (SARS-CoV-2): Hal-Hal yang Perlu Anda Ketahui. [online] available at https://www.google.com/search?q=melawan+covid+19+di+twitter+indonesia&rlz=1C1CHBF_enID991ID991&oq=melawan+covid+19+di+twitter+indonesia&aqs=chrome..69i57j33i22i29i30.9230j0j7&sourceid=chrome&ie=UTF-8 accessed on January 2023

Usta, J., Murr, H., & El-Jarrah, R. (2021). COVID-19 lockdown and the increased violence against women: Understanding domestic violence during a pandemic. Violence and gender, 8(3), 133-139. https://doi.org/10.1089/vio.2020.0069

Wibawa, B. M., Baihaqi, I., Nareswari, N., Mardhotillah, R. R., & Pramesti, F. (2022). Utilization of Social Media and Its Impact on Marketing Performance: A Case Study of SMEs in Indonesia. International Journal of Business and Society, 23(1), 19-34. https://doi.org/10.33736/ijbs.4596.2022

Woolf, N. H., & Silver, C. (2017). Qualitative analysis using NVivo: The five-level QDA® method. Routledge.

Yu, Z., Razzaq, A., Rehman, A., Shah, A., Jameel, K., & Mor, R. S. (2021). Disruption in global supply chain and socio-economic shocks: a lesson from COVID-19 for sustainable production and consumption. Operations Management Research, 1-16. https://doi.org/10.1007/s12063-021-00179-y

Downloads

Published

2023-11-19

How to Cite

Putri, S. S. U., & Khan, I. U. (2023). Machine Learning Identification on Twitter Towards Combating Covid-19 (SARS-CoV-2): Pandemic Attacks and Urban Resilience in Indonesia. Government & Resilience, 1(1), 52–65. https://doi.org/10.62503/gr.v1i1.5