Using Big Data Methods in Bandung City Planning Research: Urban Resilient Governance with Smart City

Authors

  • Abdillah Abdillah Gradute Program in Administrative Science, Faculty of Social and Political Sciences, Universitas Padjadjaran, Bandung, Indonesia https://orcid.org/0000-0002-4038-1659
  • Ida Widianingsih Department of Public Administration, Faculty of Social and Political Sciences, Universitas Padjadjaran, Bandung, Indonesia
  • Rd Ahmad Buchari Department of Public Administration, Faculty of Social and Political Sciences, Universitas Padjadjaran, Bandung, Indonesia
  • Heru Nurasa Department of Public Administration, Faculty of Social and Political Sciences, Universitas Padjadjaran, Bandung, Indonesia.

DOI:

https://doi.org/10.62503/gr.v3i1.24

Keywords:

Urban planning, Smart City, Urban Resilience, Cities Emergency Governance;, Big Data Analytics

Abstract

This study explores the significance of big data methods in urban planning, focusing on their application in Bandung City’s smart city initiatives, the challenges involved, and their potential in foster a resilient urban environment. This research adopts a descriptive approach, utilizing big data methods to analyze urban resilience governance within the smart city framework of Bandung City. The study provides insights into the challenges, ethical considerations, and potential benefits of applying big data methods in urban planning for Bandung City. It also examines the concept of resilient urban governance in the development of smart cities. However, this study does not specifically analyze a particular case in Bandung City. Instead, it aims to offer valuable perspectives on the role of big data in broader urban planning and key strategies that can be applied to enhance urban governance resilience—both in Bandung City and in other cities facing similar challenges and opportunities. Integrating big data methods into Bandung City's urban planning is a crucial step toward achieving resilient governance in the context of a smart city. By leveraging advanced data analytics, cities can enhance decision-making processes, optimize resource management, and improve public services, ultimately fostering a more sustainable and liveable urban environment.

Author Biography

Abdillah Abdillah, Gradute Program in Administrative Science, Faculty of Social and Political Sciences, Universitas Padjadjaran, Bandung, Indonesia

a Assistant Professor in the Administrative Sciences Programme, Faculty of Social and Political Sciences, Universitas Padjadjaran, Bandung, Indonesia. His research interests relate to Local Government Studies, Climate Change Governance, Urban Resilience, Artificial Intelligence in Government, and Local political.

References

Abdillah, A., Buchari, R. A., Widianingsih, I., & Nurasa, H. (2023). Climate change governance for urban resilience for Indonesia: A systematic literature review. Cogent Social Sciences, 9(1), 2235170. https://doi.org/10.1080/23311886.2023.2235170

Abdillah, A., Widianingsih, I., Buchari, R. A., & Nurasa, H. (2024a). Urban health in Indonesia: Progress and prospects for urban resilience. Developments in Environmental Science, 15, 431-447. https://doi.org/10.1016/B978-0-443-21948-1.00021-2

Abdillah, A., Widianingsih, I., Buchari, R. A., & Nurasa, H. (2024b). Urbanization, homelessness, and climate change: Urban resilience challenges in Indonesia. In Homelessness to Hope (pp. 187-201). Elsevier. https://doi.org/10.1016/B978-0-443-14052-5.00010-0

Abdillah, A., Widianingsih, I., Buchari, R. A., & Nurasa, H. (2024c). Big data security & individual (psychological) resilience: A review of social media risks and lessons learned from Indonesia. Array, 100336. https://doi.org/10.1016/j.array.2024.100336

Anggoro, T. P., Nainggolan, B., & Purwandesi, E. (2016, July). Social media analysis supporting smart city implementation (practical study in bandung district). In 2016 International Conference on ICT for Smart Society (ICISS) (pp. 80-86). IEEE. https://doi.org/10.1109/ICTSS.2016.7792853

Bibri, S. E. (2018). Unprecedented innovations in sustainable urban planning: novel analytical solutions and data-driven decision-making processes. Smart Sustainable Cities of the Future: The Untapped Potential of Big Data Analytics and Context–Aware Computing for Advancing Sustainability, 247-296. https://doi.org/10.1007/978-3-319-73981-6_5

Chauhan, S., Agarwal, N., & Kar, A. K. (2016). Addressing big data challenges in smart cities: a systematic literature review. info, 18(4), 73-90. https://doi.org/10.1108/info-03-2016-0012

Dhankhar, A., & Solanki, K. (2019). A comprehensive review of tools & techniques for big data analytics. International journal of emerging trends in engineering research, 7(11), 556-562. https://doi.org/10.30534/ijeter/2019/257112019

Faramarzi, A., Hadizadeh, R., Fayyaz, S., Sajadimanesh, S., & Moradi, A. (2022). Web scraping technique for producing Iranian consumer price index. Statistical Journal of the IAOS, 38(1), 263-276. https://doi.org/10.3233/SJI-210828

Gayathri, T., & Bhaskari, D. L. (2021). Oppositional cuckoo search optimization based clustering with classification model for big data analytics in healthcare environment. Journal of Applied Science and Engineering, 25(4), 843-851. https://doi.org/10.6180/jase.202208_25(4).0019

Hahn, S., & Ryu, Y. M. (2024). Research trends on resilience related to nursing and patients: a bibliometric analysis. Science Editing, 11(1), 44-54. https://doi.org/10.6087/kcse.322

Jangirala, S., & Chakravaram, V. (2021). Authenticated and privacy ensured smart governance framework for smart city administration. In ICCCE 2020: Proceedings of the 3rd International Conference on Communications and Cyber Physical Engineering (pp. 931-942). Springer Singapore. https://doi.org/10.1007/978-981-15-7961-5_87

Ju, J., Liu, L., & Feng, Y. (2018). Citizen-centered big data analysis-driven governance intelligence framework for smart cities. Telecommunications Policy, 42(10), 881-896. https://doi.org/10.1016/j.telpol.2018.01.003

Kameswari, Y. L., Kumar, S., Moram, V., Kumar, M., & Shah, K. B. (2025). A dashboard framework for decision support in smart cities. In Digital Twins for Smart Cities and Villages (pp. 227-248). Elsevier. https://doi.org/10.1016/B978-0-443-28884-5.00011-7

Kandt, J., & Batty, M. (2021). Smart cities, big data and urban policy: Towards urban analytics for the long run. Cities, 109, 102992. https://doi.org/10.1016/j.cities.2020.102992

Kourtit, K., & Nijkamp, P. (2018). Big data dashboards as smart decision support tools for i-cities–An experiment on stockholm. Land use policy, 71, 24-35. https://doi.org/10.1016/j.landusepol.2017.10.019

Kulkarni, O., Jena, S., & Ravi Sankar, V. (2020). MapReduce framework based big data clustering using fractional integrated sparse fuzzy C means algorithm. IET Image Processing, 14(12), 2719-2727. https://doi.org/10.1049/iet-ipr.2019.0899

Kurniasih, D., Prianto, A. L., Abdillah, A., Congge, U., & Akib, E. (2023). Strengthening Climate Change Governance & Smart City Through Smart Education in Bandung Indonesia. In Urban Environment and Smart Cities in Asian Countries: Insights for Social, Ecological, and Technological Sustainability (pp. 369-386). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-25914-2_16

Lin, Y., Wang, H., Li, J., & Gao, H. (2019). Data source selection for information integration in big data era. Information Sciences, 479, 197-213. https://doi.org/10.1016/j.ins.2018.11.029

Lnenicka, M., Hervert, P., & Horak, O. (2024). Understanding big data and data protection measures in smart city strategies: An analysis of 28 cities. Urban Governance, 4(4), 255-273. https://doi.org/10.1016/j.ugj.2024.12.008

Megahed, F. M., & Jones-Farmer, L. A. (2015). Statistical perspectives on “big data”. Frontiers in statistical quality control 11, 29-47. https://doi.org/10.1007/978-3-319-12355-4_3

Prasad, S., & Prawal, K. (2024). Big Data Analytics Lifecycle. In Big Data Analytics Techniques for Market Intelligence (pp. 100-118). IGI Global. https://doi.org/10.4018/979-8-3693-0413-6.ch003

Qureshi, S. R., & Gupta, A. (2014, March). Towards efficient big data and data analytics: a review. In 2014 conference on IT in business, industry and government (CSIBIG) (pp. 1-6). IEEE. https://doi.org/10.1109/CSIBIG.2014.7056933

Sareen, S., Abid, N., & Haque, M. (2024). Enabling big data in planning solutions for smart cities. IET Conference Proceedings, 2023(44), 172-176. https://doi.org/10.1049/icp.2024.0920

Sarker, M. N. I., Khatun, M. N., Alam, G. M., & Islam, M. S. (2020, September). Big data driven smart city: way to smart city governance. In 2020 International Conference on Computing and Information Technology (ICCIT-1441) (pp. 1-8). IEEE. https://doi.org/10.1109/ICCIT-144147971.2020.9213795

Sassite, F., Addou, M., & Barramou, F. (2022). A machine learning and multi-agent model to automate big data analytics in smart cities. Int. J. Adv. Comput. Sci. Appl., 13(7), 441-451. https://doi.org/10.14569/IJACSA.2022.0130754

Schintler, L. A., & McNeely, C. L. (2022). Artificial intelligence, institutions, and resilience: Prospects and provocations for cities. Journal of Urban Management, 11(2), 256-268. https://doi.org/10.1016/j.jum.2022.05.004

Shah, S. A., Seker, D. Z., Rathore, M. M., Hameed, S., Yahia, S. B., & Draheim, D. (2019). Towards disaster resilient smart cities: Can internet of things and big data analytics be the game changers?. IEEE Access, 7, 91885-91903. https://doi.org/10.1109/ACCESS.2019.2928233

Strielkowski, W., Faminskaya, M., & Potekhina, E. (2021). Urban infrastructure via Big Data. In E3S Web of Conferences (Vol. 301, p. 05003). EDP Sciences. https://doi.org/10.1051/e3sconf/202130105003

Tang, X., Zou, C., Shu, C., Zhang, M., & Feng, H. (2024). Research on Site Selection Planning of Urban Parks Based on POI and Machine Learning—Taking Guangzhou City as an Example. Land, 13(9), 1362. https://doi.org/10.3390/land13091362

Downloads

Published

2025-04-02

How to Cite

Abdillah, A., Widianingsih, I., Buchari, R. A., & Nurasa, H. (2025). Using Big Data Methods in Bandung City Planning Research: Urban Resilient Governance with Smart City. Government & Resilience, 3(1), 52–62. https://doi.org/10.62503/gr.v3i1.24